

Spectral evolution of 25 millisecond γ-ray pulsars with Fermi-LAT

2 papers in preparation

Alice Harding N. Renault-Tinacci

On behalf of the Fermi-LAT Collaboration

In collaboration with : I. Grenier, L. Guillemot, C. Venter.

Why MSPs ?

- Growing γ-ray pulsar class
 (≈50% of detected pulsars)
- Sharp MSP γ-ray profiles
 - ➔ thin gaps ➔ high pair densities
 - similar to young pulsars

- radiation processesMSPs larger stability
- But MSPs are fainter pulsars
 spectral analyses more difficult

same $B_{LC} \rightarrow$ similar acceleration &

Samma-rav

- Data selection :
 - Pass 7 Reprocessed Fermi-LAT data
 - 60 months (August 2008 August 2013)
 - 50 MeV < E_{phot} < 172 GeV
- Fixed-count binned lightcurves :
 - E_{phot} > 200 MeV
 - 4 MSPs classes based on morphology
 - Phase interval definition
- Spectral analysis :
 - Total emission and from phase intervals
 - Pulsed flux extraction in energy bins (no need for an input spectral shape)
- Subsequent spectral characterisation
 - Power law with exponential cut-off
 - SED apex energy
 - γ -ray luminosity above 50 MeV, L $_{v}$

- ...

Phase-resolved spectra

Phase-resolved spectra

- log₁₀E [MeV] 2.5 2 3.5 4.5 5 3 4 **2-**Γ P1 Leading P1 Core **P1** Trailing log₁₀vF_v [MeV cm⁻² -5 -5.5 -6 P2 Leading P2 Core ່ທ -4.5 **P2** Trailing $\log_{10} v F_v$ [MeV cm⁻² -5 -5.5 -6 2 2.5 3.5 4.5 3 5 4 log₁₀E [MeV]
- Photon index, Γ ⇔ primary particle distribution, cascade development and/or photon pile-up in phase
- Apex Energy, E_{apex} produced in the acceleration/emission regions
- Cut-off energy, E_{cut} ⇔ Maximum pair energy or γ-γ pair absorption

MSP spectral sequence

- Toy model of curvature radiation spectra :
 - From primaries near the light cylinder
 - $ρ_c = R_{LC}$ (Hirotani 2011)

- Test with different Γ_{\max} distributions
- Softer component required to reproduce the evolution in the sample

MSP spectral sequence

- For the Slot Gap (Harding et al. 2008) or Outer Gap • models (Takata et al. 2008)
 - Synchroton component (cyclotron resonant absorption of radio photons)
 - from primaries (not possible from secondaries)
- For the Outer Gap (Wang et al. 2010) or the FIDO ٠ models (Kalapotharakos 2014)
 - Transition from $E_{//} \neq 0$ to $E_{//} = 0$ not abrupt
 - CR at few hundreds MeV \rightarrow

Gamma-ray

MSP spectral sequence

- Multi-peak pulsars : softening when radio and γ-ray aligned
- → Synchrotron component from pairs gaining pitch angle by cyclotron resonant absorption of co-located radio photons (Harding et al. 2008)

N. Renault-Tinacci

Different emission regions/regimes

- Total emission
- Trend consistent with the Second Fermi-LAT Pulsar Catalog (Abdo et al. 2013)
- $L_{\gamma} \propto \dot{E} \rightarrow$ unscreened gaps
- But :
 - Multi-peaks : $L_{\gamma} \propto \sqrt{E}$ screening
 - Ramps : L_γ ∝ Ė → no screening

Space Telescope

- Need to re-think the classical picture of thin caustic gaps/wide unscreened regions
 - Evolution across rotational phase of accelerating and screening regimes
 - Emission from multiple regions with different electrodynamic properties
 - Lightcurve = Combination of emissions from different zones of a single accelerator and/or from different magnetospheric regions
- MSP spectral sequence with E :
 - Potential influence of radio emission
 - Consistent with the onset of an additional component at lower energy
 - Synchrotron radiation of primaries
 - And/or smooth transition in E_{//}

Thank you for your attention !

Space Telescope

Saturation of Lorentz factors

- Toy model of curvature radiation spectra :
 - From primaries near the light cylinder
 - $ρ_c = R_{LC}$ (Hirotani 2011)
 - Test with different Γ_{\max} distributions
- Inability of a single CR component to reproduce the evolution in the sample
 - With pure CR : Ϡ E_{apex} & ↘ Γ
 - → Softer component required

- For the Slot Gap (Harding et al. 2008) or Outer Gap models (Takata et al. 2008)
 - Synchroton component (cyclotron resonant absorption of radio photons)
 - from primary pairs
- For the Outer Gap (Wang et al. 2010) or the FIDO models (Kalapotharakos 2014)
 - Transition from $E_{//} \neq 0$ to $E_{//} = 0$ not abrupt
 - → CR at few hundreds MeV

17

Gamma-ray Space Telescope

- Slot Gap (Arons 1983), Polar Cap (Sturrock 1971), Outer Gap (Cheng et al 1986, Romani 1996), FIDO (Kalapotharakos et al. 2014, dissipative magnetosphere simulations, in current sheet) → screened regime → Thin gaps → L_v ∝ VE
- Pair Starved Polar Cap (Harding & Muslimov 2004b) → unscreened regime → acceleration in the open field line region → CR → L_y ∝ Ė
- Striped wind (Kirk et al. 2009, Pétri 2012) → outside light cylinder (>5 R_{LC}), synchrotron, L_γ ∝ VĖ/P N. Renault-Tinacci

Force-free Inside Dissipative Outside

ot al. 2014

- Dissipative magnetosphere
- Time-dependent Maxwell equation numerical resolution
 - Ohm's law relating current and EM fields

$$\vec{J} = c\rho \frac{\vec{E} \wedge \vec{B}}{E_0^2 + B^2} + \sigma E_{||}$$

- σ is fixed
- Curvature radiation
- Increasing σ → decreasing E_{||} → longer acceleration distance → outer magnetosphere emission
- To reproduce Fermi-LAT observations
 - FIDO, force free inside, dissipative outside
 - Current sheet emission
- In reality need a variable σ (Philippov 2014)

Spectral behaviour across phase (multi-peak)

Dermi

P3

One pole

- Special relativistic effects → phase shifts (Morini 1983)
 - time-of-flight delays, light aberration
 - retardation of magnetic field

Emission on leading field lines

- spreads out in phase
- arrives at inertial observer at different

Slot Gap

0.5

Phase

times

Ω

Emission on trailing field lines

- bunches in phase
- arrives at inertial observer simultaneously
- Peaks = caustics
- Phased resolved spectral analysis
 - mapping (in a complex way)
 processes with altitude and azimuth

Analysis protocol

- Data selection :
 - Pass 7 Reprocessed Fermi-LAT data
 - 60 months (August 2008 August 2013)
 - 50 MeV < E_{phot} < 172 GeV</p>
- Fixed count binned lightcurves :
 - Photon selection
 - E_{phot}> 200 MeV
 - $\theta_{\text{phot}} < \theta_{68\%}(\mathsf{E}_{\text{phot}})$
 - 30 or 50 bins
 - 4 MSPs classes based on morphology
 - Phase resolved interval definition
- Spectral analysis method :
 - Binned maximum likelihood estimator with Poisson statistics
 - Fit in each energy band independently
 - Iterations → no analytical spectral shape assumption
- Spectral charactrisation
 - Bivariate maximum likelihood estimator ->
 - Local quadractic regression (χ^2)

 $\frac{dN}{dE}$ =

Spectral shape :

$$= N \left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)^{-\Gamma}$$

The Fermi-LAT era

